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ABSTRACT 

Shock jump conditions, i.e., the specification of the downstream parameters of the 
gas in terms of the upstream parameters, are obtained for steady-state, plane shocks 
with oblique magnetic fields and arbitrary flow speeds. This is done by combining the 
continuity of particle number flux and the electromagnetic boundary conditions at the 
shock with the magnetohydrodynamic conservation laws derived from the stress-energy 
tensor. For ultrarelativistic and nonrelativistic shocks, the jump conditions may be 
solved analytically. For mildly relativistic shocks, analytic solutions are obtained for 
isotropic pressure using an approximation for the adiabatic index that is valid in high 
sonic Mach number cases. Examples assuming isotropic pressure illustrate how the 
shock compression ratio depends on the shock speed and obliquity. In the more general 
case of gyrotropic pressure, the jump conditions cannot be solved analytically with- 
out additional assumptions, and the effects of gyrotropic pressure are investigated by 
parameterizing the distribution of pressure parallel and perpendicular to the magnetic 
field. Our numerical solutions reveal that relatively small departures from isotropy 
(e.g., N 20%) produce significant changes in the shock compression ratio, r ,  at all 
shock Lorentz factors, including ultrarelativistic ones, where an analytic solution with 
gyrotropic pressure is obtained. In particular, either dynamically important fields or 
significant pressure anisotropies can incur marked departures from the canonical gas 
dynamic value of r = 3 for a shocked ultrarelativistic flow and this may impact models 
of particle acceleration in gamma-ray bursts and other environments where relativis- 
tic shocks are inferred. The jump conditions presented apply directly to test-particle 
acceleration, and will facilitate future self-consistent numerical modeling of particle ac- 
celeration at oblique, relativistic shocks; such models include the modification of the 
fluid velocity profile due to the contribution of energetic particles to the momentum 
and energy fluxes. 
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1. INTRODUCTION 

Collisionless shocks are pervasive throughout space and are regularly associated with objects as 
diverse as stellar winds, supernova remnants, galactic and extra-galactic radio jets, and accretion 
onto compact objects. Relativistic shocks, where the shock speed is close to the speed of light, 
may be generated by the most energetic events; for example, pulsar winds, blastwaves in quasars 
and active galactic nuclei (e.g., Blandford & McKee 1977), and in gamma-ray bursts (e.& Piran 
1999). They may naturally emerge as the evolved products of Poynting flux-driven or matter- 
dominated outflows in the vicinity of compact objects such as neutron stars and black holes. As 
relativistic shocks propagate through space, magnetic fields upstream from the shock, at even small 
angles with respect to the shock normal, are strongly modified by the Lorentz transformation to the 
downstream frame. The downstream magnetic fields are both increased and tilted toward the plane 
of the shock and can have large angles with respect to the shock normal. Hence, most relativistic 
shocks can be expected to see highly oblique magnetic fields and oblique magnetohydrodynamic 
(MHD) jump conditions are required to describe them. 

Relativistic shock jump conditions have been presented in a variety of ways over the years. The 
standard technique for deriving the equations is to set the divergence of the stress-energy tensor 
equal to zero on a thin volume enclosing the shock plane and use Gauss’s theorem to generate the 
jump conditions across the shock. For example, Taub (1948) developed the relativistic form of the 
Rankine-Hugoniot relations, using the stress-energy tensor with velocity expressed in terms of the 
Maxwell-Boltzmann distribution function for a simple gas. de Hoffmann & Teller (1950) presented 
a relativistic MHD treatment of shocks in various orientations and a treatment of oblique shocks 
for the nonrelativistic case, eliminating the electric field by transforming to a frame where the flow 
velocity is parallel to the magnetic field vector (now called the de Hoffmann-Teller frame). Peacock 
(1981), following Landau & Lifshitz (1959), presented jump conditions without electromagnetic 
fields, and Blandford & McKee (1976), also using the approach of Landau & Lifshitz (1959) and 
Taub (1948), developed a concise set of jump conditions for a simple gas using scalar pressure. 
Webb, Zank, & McKenzie (1987) provided a review of relativistic MHD shocks in ideal, perfectly 
conducting plasmas, and in particular the treatment by Lichnerowicz (1967, 1970), which used this 
approach to develop the relativistic analog of Cabannes’ shock polar (Cabannes 1970), whose origins 
also lie in Landau & Lifshitz (1959). Kirk & Webb (1988) developed hydrodynamic equations using 
a pressure tensor, and Appl & Camenzind (1988) developed relativistic shock equations for MHD 
jets using scalar pressure and magnetic fields with components Bz and El++, (a parallel field with 
a twist). Ballard & Heavens (1991) derived MHD jump conditions using the stress-energy tensor 
with isotropic pressure and the Maxwell field tensor. By using a Lorentz transformation to the de 
Hoffman-Teller frame, they restricted shock speeds, UO, to U O / C  < COSOB, where OB is the angle 
between the shock normal and the upstream magnetic field and c is the speed of light; hence, this 
approach may only be used for mildly relativistic applications. 

All of these approaches assumed that any non-thermal particles encountered by the shock did 
not affect the shock structure, Le., accelerated particles were treated as test particles, and did 
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not contribute significantly to the MHD flux conservation relations. Moreover, except for Kirk 
& Webb (1988), they confined their analyses to cases of isotropic pressures, a restriction that 
is appropriate to thermal particles or very energetic ones subject to the diffusion approximation 
in the vicinity of non-relativistic shocks. The assumption of pressure isotropy must be relaxed 
when considering the hydrodynamics of relativistic shocks (in particular non-linear ones), since 
their inherent nature imposes anisotropy on the ion and electron distributions: this is due to the 
difficulty particles have streaming against relativistic flows. The computed non-thermal particle 
anisotropies for relativistic shocks are considerable in the shock layer (e.g., Bednarz & Ostrowski 
1998; Kirk et al. 2000), persisting up to arbitrarily high ultrarelativistic energies. Such energetic 
particles eventually relax to isotropy in the fluid frame far downstream, on length scales comparable 
to diffusive ones. However, only a small minority of accelerated particles achieve isotropy in the 
upstream fluid frame of relativistic shocks, due to the rapid convection to the downstream side of the 
flow discontinuity. These isotropized particles are present only when they manage to diffuse more 
than a diffusive mean free path, A, upstream of the shock; their contribution to the flow dynamics 
is therefore dominated by that of the anisotropic particles within a distance X of the shock. For 
non-linear particle acceleration, where the non-thermal ion or electron populations possess a sizable 
fraction of the total energy or momentum fluxes, calculating pressure anisotropy will be critical for 
determining the conservation of these fluxes through the shock transition (e.g., Ellison, Baring, & 
Jones 1996). The jump conditions we develop here can serve as a guide to self-consistent solutions 
of non-linear relativistic shock acceleration problems (Ellison & Double 2002). 

Here, we extend previous work by deriving a set of fully relativistic MHD jump conditions 
with gyrotropic pressure and oblique magnetic fields. We adopt the gyrotropic case as a specialized 
generalization because it (i) is exactly realized in plane-parallel shocks and is a good approximation 
for oblique shocks where the flow deflection is small, Le., the field plays a passive role (generally high 
Alfvbnic Mach number cases), and (ii) permits a comparatively simple expression of the Rankine- 
Hugoniot jump conditions. The sonic Mach number, Ms, used throughout our paper, refers to the 
shock speed compared to the fast-mode magnetosonic wave speed as described in Kirk & Duffy 
(1999), i.e., Ms = d-, where po is the upstream mass density and PO is the upstream 
pressure. The Alfvkn Mach number we refer to here is defined as MA  BO (Bo is the 
upstream magnetic field), regardless of the shock Lorentz factor, 70 = [l - ( u o / c ) ~ ] - ~ / ~ ;  i.e., we use 
these definitions applicable to non-relativistic flows as parameters for the depiction of our results 
at all 70. 

Our results are not restricted to the de Hoffmann-Teller frame and apply for arbitrary shock 
speeds and arbitrary shock obliquities. We solve these equations and determine the downstream 
state of the gas in terms of the upstream state first for the special case of isotropic pressure, and 
then, by parameterizing the ratio of pressures parallel and perpendicular to the magnetic field, for 
cases of gyrotropic pressure. 

A principal result of this analysis is that either dynamically important magnetic fields or sig- 
nificant pressure anisotropies produce marked departures from the canonical value (e.g., Blandford 
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& McKee 1976; Kirk & Duffy 1999) of T = 3 for the shock compression ratio in an ultrarelativistic 
fluid. The magnetic weakening of ultrarelativistic perpendicular shocks came to prominence in 
the work of Kennel & Coroniti (1984) on the interaction of the Crab pulsar’s wind with its envi- 
ronment. The similarity of such consequences of fluid anisotropy and low Alfvhic Mach number 
fields, which are also pervasive for trans-relativistic and non-relativistic shocks, has its origin in the 
similar nature of the plasma and electromagnetic contributions to the spatial components of the 
stress-energy tensor. This result may have important implications for the application of first-order 
Fermi shock acceleration theory to gamma-ray bursts and jets in active galaxies. 

In this work, we concentrate on using analytic methods for determining the fluid and elec- 
tromagnetic characteristics of the shock and do not explicitly include first-order Fermi particle 
acceleration. Future work will combine these results with Monte Carlo techniques (e.g., Ellison, 
Baring, & Jones 1996; Ellison & Double 2002) that will allow the modeling of Fermi acceleration 
of particles, including the modification of the shock structure resulting from the backreaction of 
energetic particles on the upstream flow at all pertinent length scales. The jump conditions we 
present here, however, apply directly to test-particle Fermi acceleration in shocks with arbitrary 
speed and obliquity. 

2. DERIVATION OF MHD JUMP CONDITIONS 

2.1. Steady-State, Planar Shock 

Using a Cartesian coordinate system with the +z-axis pointing towards the downstream direc- 
tion, we consider an infinite, steady-state, plane shock traveling to the left at a speed uo with its 
velocity vector parallel to the normal of the plane of the shock as shown in Figure 1. The upstream 
fluid consists of a thin, nonrelativistic plasma of protons and electrons in thermal equilibrium with 
7p0 = ‘7& where 7 p o  (Zo) is the unshocked proton (electron) temperature. A uniform magnetic 
field, Bo, makes an angle @BO with respect to the z-axis as seen from the upstream plasma frame. 
We keep the field weak enough to insure high Alfvh Mach numbers (i.e., M A  2 2.5) and thus to in- 
sure that the magnetic turbulence responsible for scattering the particles is frozen into the plasma. 
The zyz coordinate system is oriented such that there are only two components of magnetic field, 
B,o and BZo, in the upstream frame. The field will remain co-planar in the downstream frame and 
the downstream flow speed will be confined to the z-z plane as well (e.g., Jones & Ellison 1987). 

In the shock frame, the upstream flow is in the Src-direction and is described by the nor- 
malized four-velocity: & = yo(1, @, 0,O). The downstream (i.e., shocked) flow four-velocity is 
,82y = 72(1,&’,0,,5;), where the subscript 0 (2) refers, here and elsewhere, to upstream (down- 
stream) quantities, p = u/c, and y = (1 - ,O2)-lI2 is the corresponding Lorentz factor associated 
with the magnitude of the flow three-velocity u. Note that these subscript conventions follow those 
used in Ellison, Berezhko, & Baring (2000), where the subscript 1 is reserved for positions infinites- 
imally upstream of the subshock discontinuity, admitting the possibility of flow and field gradients 
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Fig. 1.- Schematic diagram of a plane shock, viewed from the shock frame, showing oblique 
magnetic fields and a Gaussian volume over which the divergence of the stress-energy tensor is 
integrated. The angles and field strengths are measured in the local plasma frame and, in all of 
our examples, we take the upstream flow to be parallel to the shock normal. The y-axis is directed 
into the page. 
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upstream of the subshock. Here the use of subscript 1 is redundant. In addition, greek upper and 
lower indices refer to spacetime components 0-3, while roman indices refer to space components 
1-3. 

The set of equations connecting the upstream and downstream regions of a shock consist of the 
continuity of particle number flux (for conserved particles), momentum and energy flux conserva- 
tion, plus electromagnetic boundary conditions at the shock interface, and the equation of state. 
The various parameters that define the state of the plasma, such as pressure and magnetic field, 
are determined in the plasma frame and must be Lorentz transformed to the shock frame where 
the jump conditions apply. We assume that the electric field is zero in the local plasma rest frame. 
In general, the six jump conditions plus the equation of state cannot be solved analytically because 
the adiabatic index (i.e., the ratio of specific heats, whose value varies smoothly between the nonrel- 
ativistic and ultrarelativistic limits) is a function of the downstream plasma parameters, creating 
an inherently nonlinear problem (e.g., Ellison & Reynolds 1991). Even with the assumption of 
gyrotropic pressure, there are more unknowns than there are equations; however, with additional 
assumptions, approximate analytic solutions may be obtained. 

2.2. Transformation Properties of the Stress-Energy Tensor 

The stress-energy tensor, TPv, describes the matter and electromagnetic momentum and energy 
content of a medium at any given point in space-time. Continuity across the shock is established by 
setting the appropriate divergence (or covariant derivative TCLViV) of the stress-energy tensor equal 
to zero, namely for directions locally normal to the shock. Following standard expositions such as 
Tolman (1934) and Weinberg (1972), the total stress-energy tensor, TE, is expressed as the sum 
of fluid and electromagnetic parts, Le., 

The divergence is integrated over a thin volume containing the shock plane as shown in Figure 1. 
Application of Gauss’s theorem then yields the energy and momentum flux conditions across the 
plane of the shock by using TP”nv = 0. Accordingly, To”nv yields the conservation of energy flux, 
Tlvnv yields the z-contribution to momentum flux conservation in the z-direction, TBvnv yields 
the z-contribution to momentum flux conservation in the z-direction, and nv = (0, l , O ,  0) is the 
unit four-vector along the z-axis in the reference frame of the shock. The Einstein summation 
convention is adopted here and elsewhere in this paper. 

The components of the fluid and electromagnetic tensors are defined in the local plasma frame 
and are subsequently Lorentz-transformed to the shock frame where the flux conservation conditions 
apply, i.e., 

where the subscript n (s) refers to the plasma (shock) frame with the z-axis oriented normal to the 
shock in each case. Since the flow speeds in our model may have two space components, in the 2- 
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and z-directions, the Lorentz transformation’is 

where the p components and 7 are as previously defined in Section 2.1. The system defined in 
Figure 1 is invariant under translations in the y-direction, so that conservation laws along the 
y-axis are trivially satisfied. 

2.3. The Fluid Tensor and Equation of State 

The fluid tensor will be constrained to the gyrotropic case in the local fluid frame; i.e., pressure 
can have one value parallel to the magnetic field and a different value perpendicular to the magnetic 
field (with symmetry about the magnetic field vector). This gives the diagonal stress-energy tensor 

where e is the total energy density, 41 (Pl) is the pressure parallel (perpendicular) to the magnetic 
field4, and the subscript B refers to the magnetic axis in the plasma frame. We obtain the fluid 
tensor in the xyz plasma frame (labeled with subscript n referring to the shock normal), Tflujd,n, 

with a rotation about the y-axis, 

where 

‘Such a decomposition into projections was used, for example, by Chew, Goldberger & Low (1956). 
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The resulting tensor in the zyz plasma frame is 

(7) 

e 0 0 0 
O pII cos2 O B  + Pl  sin2 OB 
0 0 PL 0 

O ( P i  - qI) sin O B  cos OB i o (PL - q,) sin OB cos Og o PL cos’ OB + sin2 OB 

Tfluid,n = 

with the Tij space components corresponding to the 3-dimensional pressure tensor presented by 
Ellison, Baring, & Jones (1996) for nonrelativistic shocks, once a typographical error is corrected. 

Renaming the components of the fluid tensor as 

0 0  

Tfluid,n = [ ‘ pxx i’ ) , 
0 0 PYY 
0 Pzx 0 Pzz 

with Pxz = Pz5, we have the identities 

The Too component, e,  is the total energy density in the rest or plasma frame. The other com- 
ponents, Pij, are defined by Tolman (1934) as the “absolute stress’’ components in the proper 
frame. Pij is the pressure parallel to the i-axis exerted on a unit area normal to the j-axis. Hence, 
the diagonal components can be considered a pressure, but the off-diagonal components are shear 
stresses. The isotropic scalar pressure, P = Tr(Pfluid,~)/3, is a Lorentz invariant. The fluid tensor, 
in general, changes its appearance significantly under a Lorentz transformation via the mixing of 
components: for example, it picks up momentum flux components in reference frames moving with 
respect to the proper frame (Tolman 1934). 

Using the above expressions, we can derive an adiabatic equation of state. Starting with the 
spatial portion of the fluid tensor: 

the total energy density can be written as 
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where Tr(pf lu id ,B)  is the trace of the pressure tensor, r is the adiabatic index, and pc2 is the rest 
mass energy density. Using equations (9) and (lo), 

In terms of the magnetic field, where tan OB = B,/B,, the adiabatic, gyrotropic equation of state 
becomes 

While I’ is well defined in the nonrelativistic and fully relativistic limits, in mildly relativistic shocks 
I’ depends on an unknown relation between e and P which we will address in a later section. 

2.4. The Electromagnetic Tensor 

The electric and magnetic field components of the general electromagnetic tensor in the plasma 
frame are given by Tolman (1934) as 

( (ExB), ( E x B ) ,  (ExB),  ) 

where the Q’s are the Maxwell stresses defined as 

Note that here the suffix n denotes an axis orientation along the shock normal, as it does for the 
fluid tensor. Since the electric fields in the plasma frame are negligible, this simplifies to 

0 

~ , 2  - B: 
2 

0 

0 

0 

B2 - 
2 

0 

-BxBz 

0 

Observe that this electromagnetic contribution to the stress-energy tensor resembles the structure 
of that for the gyrotropic fluid in equation (8 ) ,  i.e., the presence of laminar fields should mimic 
anisotropic pressures in terms of their effect on the flow dynamics. A noticeable difference, however, 
is that while the magnetic field can exhibit tension and can therefore generate negative diagonal 
components for TIL”, depending on the orientation of the field, the corresponding diagonal pressure 
components are always positive definite. 
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2.5. Flux Conservation Relations 

As discussed above, the energy and momentum conservation relations in the shock frame can 
be derived by applying TpvnV = 0 to equation (2), individually on the Lorentz-transformed fluid 
and electromagnetic tensors. The conservation of energy flux derives from 

The fluid contribution to energy flux conservation is 

The z-component of the transformed fluid tensor contributing to the conservation of momentum 
flux is 

Ffluid - T1V 2 P2P2 
PZ - flujd,s nv = r2&(e + p~z) + pzz - (7 - 1) y ( p z z  - p.2) + 

and the z-component is 
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and the z-component is 

Clearly, parallels between the various components of the fluid and electromagnetic stress tensors 
can be drawn by inspection of these forms for the fluxes. 

In all cases where the Alfv6n Mach number is greater than a few, the downstream flow velocity 
<< pz. This allows a first-order deviates only slightly from the shock normal direction so 

approximation in Pz and the above equations become: 

for the energy flux contributions, and 

and 

r2 1 2 P z  r FpEM = 8;;PzPzB2 + E ( 7  - 1) -(BZ Bz - B:) - ;i;;B,B, 

for the z- and z-components of momentum flux, respectively. As we show below, the approxi- 
mation, Bz << Pz, becomes progressively better as the shock Lorentz factor increases but, in fact, 
equations (27-29) provide an excellent approximation at all Lorentz factors for virtually the entire 
parameter regime we have considered in this paper. Unless Mach numbers less than a few and/or 
extreme anisotropies are considered, equations (27-29) yield solutions within one part in lo4 to 
those obtained with equations (20-26) and are much easier to solve. 

2.6. Jump Conditions 

The jump conditions consist of the energy and momentum flux conservation relations, the 
particle flux continuity, and the boundary conditions on the magnetic field. The conservation of 
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particle number flux5 is 
2 

[WX] 0 = o ,  

where the brackets provide an abbreviation for 

72n2Px2 - 7onoPxo = 0 

This jump condition, as well as the ones that follow, are written in the s,,ock frame and, as always, 
the subscript 0 (2) refers to upstream (downstream) quantities. The remaining jump conditions 
are: 

Adding the steady-state conditions on the magnetic field, namely that V - B = 0: 

bx]: = 0 , 

and also that V x E = 0: 
r 

(33) 

completes the set of six jump conditions. In the limit of (y - 1) <( 1 and for isotropic pressures, 
the above expressions reproduce the standard continuity conditions at non-relativistic shocks (e.g., 
see p. 117 of Boyd & Sanderson 1969). 

At this point there are eight unknown downstream quantities (&, Pz2, Bx2, Bz2, Px22, Pxz2, 
e2, and n2) and only six equations. If isotropic pressure is assumed, Pxx = P,, = P and Pxz = 0, 
leaving six equations and seven unknowns. To obtain a closed set of equations for isotropic pressure, 
an assumed equation of state (e.g., equation 15) is added to the analysis. Successive elimination 
of variables then generally leads to a 7th-order equation in the compression ratio r = Pxo/Px2 
with lengthy algebraic expressions for its coefficients (e.g., Webb, Zank, & McKenzie 1987; Appl 
& Camenzind 1988). The forms of the coefficients depend on the assumed equation of state and 
do not simplify easily. Here we perform some of the simpler algebraic eliminations and then use a 
Newton-Raphson technique to iteratively solve two simultaneous equations. 

In Section 3.1 below, we derive an approximate expression for the downstream adiabatic index, 
r2, for cold upstream plasmas. For anisotropic cases, further microphysical information is required, 

5We assume there is no pair creation nor annihilation. 
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which is generally only accessible using computer simulations; in the gyrotropic approximation, we 
parameterize pressure anisotropy in Section 3.2 to provide insight into global characteristics of the 
jump conditions. 

3. RESULTS 

3.1. Isotropic Pressure, High Sonic Mach Number Cases 

Oblique shock jump conditions cannot, in general, be solved analytically even for isotropic 
pressure because the downstream adiabatic index, r 2 ,  depends on the total downstream energy 
density and the components of the pressure tensor (or scalar pressure), which are not known before 
the solution is obtained. The problem is inherently nonlinear except in the nonrelativistic and 
ultra-relativistic limits where I'2 = 5/3 and 4/3, respectively. Furthermore, the gyrotropic pressure 
components are determined by the physics of the model and do not easily lend themselves to analytic 
interpretation, although Kirk & Webb (1988) provided equations based on a power-law distribution 
in momentum for the pressure tensor components in the special case of a parallel relativistic shock 
with test particle first-order Fermi shock acceleration. 

An excellent approximation can be obtained in the absence of efficient particle acceleration if 
'Uth <( uo, where ?Ith is the thermal speed of the unshocked plasma. In this case, which corresponds 
to high sonic Mach numbers, upon scattering in the downstream frame all particles have 

where 

is the relative p between the converging plasma frames. From kinetic theory, the isotropic pressure 
is 

P =  - < p - v > ,  

where n is the particle number density, and p and v are the particle momentum and velocity, 
respectively. Then, with our approximation for particle velocity and using the isotropic version of 
equation ( 13), 

(37) 
n 
3 

or. 

This essentially kinematic approximation, which is operable only if diffusive transport of particles 
from downstream to upstream contributes insignificantly to the momentum and energy fluxes, per- 
mits a direct numerical solution for isotropic pressure, arbitrary obliquity (as long as the upstream 
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Fig. 2.- Compression ratio, r ,  @B2, and OU2 versus ,8070. The three panels on the left have 
MA 2 100 and the sonic Mach numbers as shown. The three right-hand panels have Ms 2 100 
with the AlfvCn Mach numbers as shown. In all cases, @BO = 5'. Note that in the top right-hand 
panel, the MA = 6 and 60 curves are nearly identical. 
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Alfvhic Mach number, MA, is high), and arbitrary flow speed (see, for example, Kirk 1988; Gallant 
2002, for alternative forms for r 2 ) .  Note that equation (39) provides an upper limit to the adiabatic 
index because any particles accelerated by the shock would tend to raise the average Lorentz factor 
and cause the adiabatic index to decrease. 

In Figures 2 and 3 we show results for the compression ratio, T ,  and the downstream angles, 
@ 3 2  and Ou2, as a function of &ryo, for two extreme upstream magnetic field angles, @BO, and 
various sonic and Alfvh Mach numbers. The magnitude of the downstream field is 

2 112 
B 2  = [Bi, + $(r2 - 1)B20] . 

There are a number of important characteristics of these results. First, the jump conditions 
map smoothly from fully nonrelativistic to ultrarelativistic shock speeds and obtain the canonical 
values for the compression ratio r = /3x~/px2 = 4 for high Mach number, nonrelativistic shocks, and 
T- = 3 for high Mach number ultrarelativistic shocks. For ,Bo70 5 1 and regardless of the obliquity, 
a low MS results in a weaker shock with smaller T ,  as expected (similar behavior is exhibited in 
Figure 1 of Appl & Camenzind 1988). For &yo 2 10, the sonic Mach number Ms has little influence 
on the results until it becomes very low, i.e. TOM: - 1. Since our definition of Ms is inherently 
non-relativistic, perceptible changes to the fluid dynamics arise only when the pressure Po becomes 
comparable to the relativistic ram pressure 70@p0c2; this domain is exhibited in the parallel fluid 
shock jump conditions explored by Taub (1948). 

Figure 2 with @BO = 5" and Figure 3 with @BO = 85" illustrate an important characteristic of 
relativistic shocks. For all upstream field obliquities other than @BO = 0, the downstream magnetic 
field angle shifts towards OB2 = 90" as the shock Lorentz factor increases, indicating the importance 
of addressing oblique fields when treating acceleration at highly relativistic shocks. The transition 
criterion is directly obtainable from equation (34) (since Ou2 is, in general, very small). One 
quickly arrives at Po-yo tan @BO 2 1 being the necessary condition to render tan O B 2  > 1, so that 
O B 2  + 90". Furthermore, in the left hand panels of Figures 2 and 3, the angle the downstream 
flow makes with the shock normal, OU2,  is small at all yopo (note the logarithmic scale for Ou2), 

consistent with the assumption that P2 << /3=. This is a consequence of the passive magnetic field 
corresponding to M A  >> 1. Very different behavior is exhibited when the field becomes dynamically 
important, as is evident in the upper right-hand panels of Figures 2 and 3: a low M A  (i.e., high 
Bo) can drastically lower r ,  even at ultrarelativistic speeds (see Kennel 8z Coroniti 1984). 

In Figure 4 we show l?2 for the two extreme sonic Mach number cases from Figure 2. Our 
approximation for l?2 depends on uo and r ,  but turns out to be quite insensitive to r ,  at least in 
the range above T N 2.7. The l?2 generated by equation (39) is essentially the same as the low 
temperature solutions presented in Figure 2b of Heavens & Drury (1988) for an e+e- plasma. As 
noted above, if Fermi acceleration is permitted to occur, l?2 will approach 4/3 at lower &yo due to 
the contribution of energetic particles. 

The variation of T with shock speed we show here closely resembles the low sonic Mach number 
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MA = 100 OB, = 85' M, = 100 

Fig. 3.- Same as in Figure 2 except all examples here have @BO = 85". Note the drop in r ,  even 
at 70 >> 1, in the upper right-hand panel where anisotropic magnetic stresses become important. 
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Fig. 4.- The downstream ratio of specific heats, I'2, versus POYO for the extreme Ms cases shown 
in the left-hand panels of Figure 2. Very similar curves are obtained for all of the examples shown 
in Figures 2 and 3. 
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solutions depicted in Figure 4 of Fujimura & Kennel (1979), who considered jump conditions in 
parallel (i.e., MA + m) trans-relativistic shocks using an isotropic Juttner-Synge equation of state 
(Synge 1957). The principal effect of upstream heating is to lower the compression ratio and 
weaken the shock when the ratio of the particle pressure to the rest mass energy exceeds the square 
of the shock four-velocity. The compression ratio clearly becomes insensitive to the plasma heating 
in ultrarelativistic, parallel shocks since ro is always 4/3 and the solution is Pop2 = 1/3 (e.g., 
Blandford & McKee 1976). An array of possible jump conditions is admitted when an extension 
to multi-component plasmas is explored, such as in Peacock (1981), Kirk (1988), Heavens & Drury 
(1988) and Ballard & Heavens (1991), where the thermal interplay of ions and electrons on the shock 
dynamics in the trans-relativistic regime can be encapsulated using the two adiabatic shock index 
parameters ro and I'2. Such a parameterization implies that a variety of equations of state can be 
accommodated within the formalism presented here. Notwithstanding, when particle acceleration 
is considered, thermal equations of state become inappropriate and simulation results become more 
important (Ellison & Reynolds 1991). 
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Fig. 5.- Compression ratio versus AlfvCn Mach number for various upstream magnetic obliquities, 
@BO. The values of r are obtained in the ultrarelativistic limit with CY = 1, 
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Figure 5 shows how r varies as a function of MA in the ultrarelativistic limit for various values of 
@BO and with isotropic pressure. The compression ratio depends strongly on the upstream obliquity 
and can drop well below 3 for low MA. The lower right-hand panels of Figures 2 and 3 also show 
that a low MA produces magnetic stresses that cause the downstream flow to deflect from the 
shock normal direction, causing 0 , 2  to vary inversely as MA. Despite the fact that 0,2 N 20" for 
Ms = 100 and MA = 2.6, the approximate equations (27)-(29) give essentially identical results as 
the complete equations (20-26). The impact of either Mach number on 0 ~ 2  is relatively small. 

The most important consequence of a large magnetic field energy density is that it lowers the 
compression ratio in oblique shocks (the field is dynamically passive in parallel ones with @BO = 0), 
even when 'yo >> 1. The effect is contained in Eq. (4.11) of Kennel & Coroniti (1984), which specifies 
the jump condition or downstream flow four-velocity for an ultrarelativistic perpendicular MHD 
shock. Algebraically simplifying their formula, and expressing it in terms of the three-velocity 
compression ratio r and Alfvhic Mach number MA used here, leads to the form (for pZo = BO x 1) 

where the ratio u of the magnetic plus electric energy flux to the particle energy flux that is used 
by Kennel & Coroniti (1984) is given by Q M l/M; = B~/(47rp021~). This result applies to 70 >> 1 
regimes, and is reproduced in the numerical results depicted in the top right hand panel of Fig 3 
and also the 89" curve of Fig 5. 

The weakening of nonrelativistic shocks at low Alfv6n Mach numbers is widely understood. 
Such an effect is suggested for shocks with pZo 0.8 in Ballard & Heavens (1991) and is also 
somewhat apparent for pxo ,$ 0.97 in Appl & Camenzind (1988). Kirk & Duffy (1999) show T 

as a function of MA through the trans-relativistic regime for @BO = 45". The mildly relativistic 
regime was appropriate for shocked jets in active galactic nuclei, the main application of relativistic 
MHD shock analyses over a decade ago. Here, it is evident that this lowering of r by dynamically 
important magnetic fields persists up to arbitrarily high 'yo, a result obtained by Kennel & Coroniti 
(1984), who applied relativistic MHD to the consideration of perpendicular pulsar termination 
shocks. The more recent association of ultrarelativistic shocks with cosmic gamma-ray bursts 
further motivates the extension to the 'yo 2 100 regime. Accordingly, this magnetic weakening 
of the shock has profound implications for the interpretation of gamma-ray burst spectra and 
associated emission mechanisms. 

The origin of this effect can be attributed to the anisotropic and intrinsically relativistic nature 
of the field structure. In the ultrarelativistic regime, the equation of state of a quasi-isotropic, 
turbulent field structure replicates that of the familiar ultrarelativistic gas with I' = 4/3. However, 
if the field is laminar and oblique, the stress-energy tensor in equation (18) exhibits anisotropic 
stresses. This anisotropy influences the flux conservation relations for dynamically important fields 
when BzO # 0; moreover it should mimic to some extent the behavior anticipated from anisotropies 
due to the gas contribution. Such a parallel obviously emerges from results presented in the next 
Section. 
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Fig. 6.- The top three panels show the compression ratio, r ,  versus ,&yo for shocks with varying 
downstream anisotropy, cy = P L / ~ I ,  and obliquity, @BO. In all panels, the solid curves have cy = 1, 
the dashed curves have cy = 0.8, and the dotted curves have cy = 1.2 downstream. The upstream 
plasma is taken to be isotropic (Le., cy = 1) in all cases, but the upstream cy has virtually no 
influence on the solutions for the parameter regime we consider. The anisotropy has little effect on 
@B2, but does cause modifications in O U 2  at mildly relativistic shock speeds, as indicated in the 
bottom panel which shows the angle the downstream flow makes with the shock normal for the 
particular case @BO = 10". These are high Mach number examples (Ms = MA 2 100); the effect 
on r at lower Mach numbers is shown in Figure 7. 
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3.2. Gyrotropic Pressure 

For gyrotropic pressure, an additional constraint is needed to close the system of equations and 
obtain an analytical solution; we impose this via 

where a is an arbitrary parameter and a = 1 corresponds to isotropic pressure. Equation (42) 
allows us to illustrate the effects of anisotropic pressure, but is not suggested as a model for 
specific acceleration scenarios. In relativistic shocks where the accelerated population contributes 
significantly to the total dynamical pressure, the value of a should deviate significantly from unity 
in both the upstream and downstream regions. Using equation (7), equation (42) then yields 

P,, = P, , (COS~ OB + asin2 OB) , 

PZz = pI1 (a - 1) sin OB cos OB , 
(43) 

(44) 

and using the fluxes given in equations (20)-(26) or (27)-(29), we have a closed set of equations 
for the jump conditions for shocks with gyrotropic pressure, arbitrary obliquity, and arbitrary flow 
speed. Results for various @BO'S and a's are shown in Figure 6 (these results all have Ms = MA = 
100 but they remain unchanged for larger Mach numbers). The solid curves have a = 1, the dashed 
curves have a = 0.8, and the dotted curves have a = 1.2. In all cases, we have taken the pressure 
in the unshocked gas to be isotropic and a # 1 is only applied downstream. 

While our solutions can allow for anisotropic upstream pressure, an upstream a # 1 generally 
produces insignificant changes to our results for the parameter regime discussed here. Notable 
exceptions arise when the sonic Mach number is very low, i.e. TOM: N 1. We observe that angular 
distributions at relativistic shocks generated by Monte Carlo simulations (e.g., Bednarz & Ostrowski 
1998; Ellison & Double 2002) and semi-analytic convection-diffusion equation solutions (Kirk et al. 
2000) indicate that for plane-parallel scenarios with OBO = 0 the accelerated particles are dominated 
by parallel pressure upstream (a  < 1) and perpendicular pressure downstream ( a  > 1) when near 
the shock. This would suggest a possible weakening of the shock if the non-thermal population 
were to contribute significantly to the dynamics, thereby rendering such a contribution less likely. 
The picture may be much different for oblique and perpendicular shocks. 

The effects of anisotropic pressure on the compression ratio depend strongly on 70 and @BO. 

When @BO is small, the downstream angle Of32 is also small at nonrelativistic and mildly relativistic 
shock speeds (top panel of Figure 6). Therefore, at these speeds PZz N 0 and P,, - for any 
a. Since pI1 = P l / a ,  the fraction of downstream pressure in Pzz is inversely proportional to a 
and since P,, largely determines r ,  the compression ratio is less than the isotropic value, q,,, for 
a = 0.8 and greater than Tiso for a = 1.2, as shown in the figure. In contrast, as 70 + 00, OB2 
approaches 90" for any @BO > 0 (see Figure 2) and P,, - P l  with PZz again approximately equal 
to zero. Now, the fraction of pressure in Pzz will be proportional to a and r < Tiso for a > 1 
and r > rise for a < 1. The transition where r crosses Tiso occurs at slower shock speeds as @BO 
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Fig. 7.- Compression ratio versus anisotropy for ultrarelativistic shocks. The top panel shows the 
effects of @BO, while the bottom panel shows the effects of Mach number keeping @BO = 89". Note 
that, depending on a = Pl/l$, the compression ratio T can be either larger or smaller than 3. 
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increases (see the @BO = 10" panel of Figure 6) until @BO is large enough (@BO = 60" panel) so no 
transition occurs. While the examples in Figure 6 all have Ms = MA = 100, the transition ,&yo 
is independent of Mach number. The dependence of OB2 on a is relatively small for the examples 
shown in Figure 6 but OU2 can change significantly with anisotropy, as shown in the bottom panel 
for the 0132 = 20" example. 

In Figure 7 we show r as a function of a for various Mach numbers and @BO'S, all in the 
ultrarelativistic limit. The top panel shows that r is relatively insensitive to the upstream magnetic 
field angle, with the lower panel showing a somewhat greater sensitivity to Mach number. The most 
important aspect of these plots is the fact that r can be either higher or lower than the canonical 
value of 3 if anisotropic pressure is important. This contrasts with the effects of a magnetic field 
(with isotropic pressure), where low MA'S in the ultrarelativistic limit gave r < 3 only (Figures 3 
and 5). 

3.2.1. Analytic solution for 70 >> 1 

Using our flux conservation relations in the limit 70 >> 1, and assuming that the upstream 
pressure is isotropic and the downstream adiabatic index r2 = 4/3, we obtain an analytic solution 
for r valid for any oblique angle and any MS or MA greater than one: 

where wo = eo + PO is the enthalpy density and bo = B&/47r. Only the z-component of B appears 
since Bz2 = Bz0 and this component drops out. Removing the r = 1 root, the solution to the 
remaining quadratic is 

112 { [2aq + (3a  + 1)12 + 8(a + 1)(2a + l ) ( q  + l)} - 2aq - (3a  + 1) 
r =  2(a  + 1) , (46) 

where q E wo/bo. 
poc2 sin2 @ ~ o / M i .  For isotropic pressure, i.e., Q = 1, 

Solutions in terms of MA and @BO can be found using the relation bo = 

Equations (47) and (46) reproduce the results obtained with the exact equations shown in Figures 5 
and 7 (bottom panel, solid curve) to a high degree of accuracy. In the limit of Ms >> 1 and 
@BO + go", where the identification q + Mi M 1/c  can be made, equation (47) reduces to 
equation (41), i.e. the result from Kennel & Coroniti (1984). Once r is determined, the downstream 
z-component of B can be found from equation (40). Observe that equation (46) demonstrably 
exhibits the property dr/da < 0 for all values of q, borne out in the curves of Figure 7. This ability 
of parallel pressure (in this case downstream of the shock) to strengthen the shock contrasts the 
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role of magnetic field tension in weakening a shock, as evidenced in Figure 5 and the analysis of 
Kennel & Coroniti (1984). Note that the analytic expressions that Kirk et al. (2000) derived for 
the angular distribution of accelerated particles at parallel, ultrarelativistic shocks indicates values 
of cy > 1 when pitch angle diffusion is operating. 

4. CONCLUSIONS 

We have derived shock jump conditions for arbitrary shock speeds and obliquities. When 
combined with a simple approximation for the ratio of specific heats (equation 39), these equations 
specify the downstream conditions in terms of upstream parameters for isotropic pressure. For the 
case of gyrotropic pressure, an additional arbitrary parameter (equation 42) is required to close the 
set of equations and we have presented a number of solutions where the downstream pressure is 
gyrotropic. The exact equations for energy and momentum conservation are fairly complicated, but 
we have presented simpler, approximate results (equations 27-29) which are extremely accurate in a 
wide parameter regime (i.e., MS > 5; M A  > 5; 0.8 < cy < 1.5) for any shock speed or obliquity. To 
our knowledge, this is the first presentation of oblique shock solutions with gyrotropic pressure that 
continuously span the domains of nonrelativistic, trans-relativistic, and ultrarelativistic shocks of 
arbitrary obliquity. In addition, we have presented an analytic solution for the shock compression 
ratio, T, in the limit of ultrarelativistic shock speeds valid for oblique shocks of any Ms or MA with 
gyrotropic pressure (equation 46). 

The results presented here assume that no first-order Fermi acceleration occurs, but they ap- 
ply directly to test-particle acceleration where the energy density in accelerated particles is small. 
They also constitute an important ingredient in more complex models of nonlinear particle accel- 
eration. In the test-particle case, the compression ratio T is altered by large magnetic fields and/or 
anisotropic pressures, even at ultrarelativistic speeds. The observation of marked departures from 
the canonical value of T = 3 for the compression ratio of an ultrarelativistic shock, for either dy- 
namically important fields or significant pressure anisotropies, is a major result of this paper. In 
the case of magnetic field influences on the dynamics of relativistic shocks, our results extend the 
conclusions of Kennel & Coroniti (1984) to all shock obliquities. The similarity of such consequences 
of fluid anisotropy and low Alfvknic Mach numbers is a consequence of the similar nature of the 
plasma and electromagnetic contributions to the spatial components of the stress-energy tensor. 

The importance of this result is obvious, since changes in T map directly to changes in the 
power-law index of the accelerated spectrum. This power law is the most important characteristic 
of test-particle Fermi acceleration, and is usually associated with trans-relativistic internal shocks 
in gamma-ray burst (GRB) models (e.g., Rees & MQszkos 1992; Piran 1999). In addition, the outer 
blast wave is an ultrarelativistic shock during most of its active phase, sweeping up and accelerating 
interstellar material. This shock, believed to produce long-lasting afterglows, eventually transitions 
to a non-relativistic phase. Our results are directly applicable to test-particle acceleration models 
of both the internal and external shocks in GRBs, as well as to shocks believed to exist in jets 
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in active galactic nuclei. In future work, we will apply these jump conditions to nonlinear shock 
acceleration models where the accelerated particle population can modify the shock structure. 
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